ELSEVIER

Contents lists available at SciVerse ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Non-toxic conformer of amyloid β may suppress amyloid β -induced toxicity in rat primary neurons: Implications for a novel therapeutic strategy for Alzheimer's disease

Naotaka Izuo ^{a,c}, Kazuma Murakami ^b, Mizuho Sato ^b, Mami Iwasaki ^a, Yasuhiko Izumi ^a, Takahiko Shimizu ^c, Akinori Akaike ^{a,d}, Kazuhiro Irie ^{b,*}, Toshiaki Kume ^{a,*}

- ^a Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan
- ^b Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
- ^c Department of Advanced Aging Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan

ARTICLE INFO

Article history: Received 22 May 2013 Available online 4 June 2013

Keywords: Alzheimer's disease Amyloid β-protein Neurotoxicity Oligomer

ABSTRACT

The 42-mer amyloid β -protein (A β 42) oligomers cause neurotoxicity and cognitive impairment in Alzheimer's disease (AD). We previously identified the toxic conformer of A β 42 with a turn at positions 22–23 ("toxic" turn) to form oligomers and to induce toxicity in rat primary neurons, along with the non-toxic conformer with a turn at positions 25–26. G25P-A β 42 and E22V-A β 42 are non-toxic mutants that disfavor the "toxic" turn. Here we hypothesize that these non-toxic mutants of A β 42 could suppress A β 42-induced neurotoxicity, and examined their effects on the neurotoxicity, aggregation, and levels of the toxic conformer, which was evaluated by dot blotting using a monoclonal antibody (11A1) against the toxic conformer. G25P-A β 42 and E22V-A β 42 suppressed the neurotoxicity and aggregation of A β 42 as well as the formation of the toxic conformer. The neurotoxicity induced by A β 42 was also significantly reduced by the treatment of 11A1, but not of A β -sequence specific antibodies (6E10 and 4G8). Since recent studies indicate that A β oligomers contain parallel β -sheet, the present results suggest that the non-toxic mutants of A β 42 without the "toxic" turn could prevent the propagation process of the toxic conformer of A β 42 resulting in suppression of the formation of the toxic oligomers. This could be a promising strategy for AD therapeutics.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the deposition of amyloid fibrils [1]. The deposits are mainly composed of 40- and 42-mer amyloid β -proteins (A β 40, A β 42), which are produced from amyloid β -protein precursor by two proteases, β - and γ -secretase, respectively [2]. A β 42 is considered to play a pivotal role in the pathogenesis of

AD because it aggregates faster and induces more potent neurotoxicity than A β 40 [3]. There are accumulated studies that the intermediate assemblies (oligomers) of A β contribute to the neurotoxicity, synaptic loss, and behavioral disorder [4,5]. In spite of intensive researches targeting A β 42 oligomers in the world, the ideal therapeutic medicines have not yet been developed. One of the reasons might be scarce information on the structure related to the neurotoxicity of A β 42.

Our group previously identified the toxic conformer of A β 42 with a turn at positions 22 and 23 ("toxic" turn) and the non-toxic conformer with a turn at positions 25 and 26 [6]. We also developed a monoclonal antibody (11A1) targeting the "toxic" turn in A β 42 [7], which detected the intracellular A β as well as extracellular senile plaques in the brain sections of sporadic AD patients [7,8] and the induced pluripotent stem cells (iPSCs)-derived neurons from familial and sporadic AD patients [9]. These studies suggest that the toxic conformer could be involved in the pathogenesis of AD. It is therefore indispensable to develop a strategy to remove the toxic conformer of A β 42 for AD therapeutics without adverse effects.

^d Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-Ku, Nagoya 464-8601, Japan

Abbreviations: AD, Alzheimer's disease; Aβ40, 40-mer amyloid β -protein; Aβ42, 42-mer amyloid β -protein; DIV, days in vitro; IgG, immunoglobulin G; iPSCs, induced pluripotent stem cells; MTT, 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide; NMR, nuclear magnetic resonance; PBS, phosphate-buffered saline; Th-T, thioflavin T; Veh, vehicle; Wt, wild-type.

^{*} Corresponding authors. Address: Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. Fax: +81 75 753 6284 (K. Irie). Address: Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan. Fax: +81 75 753 4579 (T. Kume).

 $[\]emph{E-mail addresses:}\ irie@kais.kyoto-u.ac.jp\ (K. Irie),\ tkume@pharm.kyoto-u.ac.jp\ (T. Kume).$

In previous solid-state nuclear magnetic resonance (NMR) analyses [6], the ratio of the non-toxic conformer in the fibrils of wild-type (Wt) A β 42 was higher than that in the fibrils of E22K-A β 42 (Italian-type mutant), which induce more potent neurotoxicity than Wt-A β 42 [10]. The mutants G25P-A β 42 and E22V-A β 42 are non-toxic and are unlikely to form "toxic" turn structure [11]. We hypothesized that these non-toxic mutants of A β 42 hinder the formation of the "toxic" turn in A β 42. This study validates this hypothesis by demonstrating the toxic effects of these mutants in rat primary neurons by 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and aggregation by thioflavin T (Th-T) test. The levels of the toxic conformer were also evaluated by dot blot using 11A1 antibody. Furthermore, the neutralizing effects of 11A1 as well as other A β -sequence specific antibodies (6E10 and 4G8) on A β 42-induced neurotoxicity were tested.

2. Material and methods

2.1. Materials

Neurobasal medium and B-27 supplement were purchased from Life Technologies (NY, US). Sodium glutamate, L-glutamine, 1 mol/L ammonium solution, MTT, 2-propanol were purchased from Nacalai Tesque (Kyoto, Japan). The antibodies against A β 1–17 (6E10) and A β 17–24 (4G8) were purchased from Covance (CA, US). Antibody against the toxic turn of A β 42 (11A1) was provided by Immuno-Biological Laboratories (IBL: Gunma, Japan). Immuno-globulin G (IgG) was purchased from Vector Laboratories (CA, US).

2.2. Neuronal cultures

Animals were treated in accordance with the guidelines of the Kyoto University Animal Experimentation Committee and the guidelines of The Japanese Pharmacological Society. Neuronal cultures were obtained from cerebral cortices of fetal Wistar rats (Nihon SLC, Shizuoka, Japan) at 17–19 days of gestation as described previously [12,13]. Cultures were maintained in Neurobasal medium with 2% B-27 supplement, 25 μ M sodium glutamate, and 0.5 mM L-glutamine at 37 °C in a humidified atmosphere of 5% CO₂. After 4 days in culture, the medium was replaced with sodium glutamate–free Neurobasal medium. Only mature cultures (8–12 days in vitro (DIV) were used for the experiments. In all experiments, B-27 supplement without antioxidants was utilized during the treatment of Aβ42 as described previously [14].

2.3. MTT assay

Neurotoxicity was assessed by MTT assay according to the previously reported protocol [10] with slight modifications. Aβ42, synthesized as previously reported [10], was dissolved in 0.02% NH₄OH to 200 μM. After 30 min of pre-incubation on ice, Aβ42 solution diluted by 0.02% NH₄OH to the appropriate concentrations was added to the culture medium (1 or $10 \,\mu\text{M}$) for dissolution. Final concentration of NH₄OH was 0.002% in the culture medium. After treatment of A β 42 (1 μ M from 8 to 12 DIV or 10 μ M from 10 to 12 DIV), MTT assay was performed. After incubation of Aβ42 at 37 °C for 2 or 4 days, the culture medium was replaced with medium containing 0.5 mg/mL MTT, and cells were incubated for 30 min at 37 °C. 2-Propanol was added to lyse the cells, and absorbance was measured at 595 nm with an absorption spectrometer (microplate reader model 680, Bio-Rad Laboratories, CA, US). The absorbance obtained by the addition of vehicle was taken as 100%. The medium of vehicle treatment of each experiment contained 0.002% NH₄OH.

2.4. Dot blot

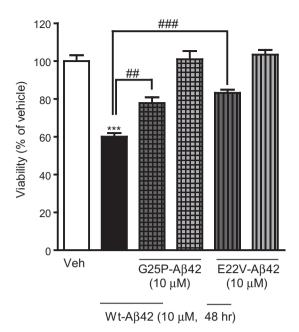
Aβ42 was dissolved in 0.02% NH₄OH at 200 μM. After 30 min of pre-incubation on ice, Aβ42 solution was diluted to 20 μM by 50 mM phosphate-buffered saline (PBS), and was incubated at 37 °C. At each time point, Aβ42 solution was gently mixed, and 2 μL of the solution was applied to a methanol-hydrophilized PVDF membrane as previously described [14]. After 10 min, the membrane was blocked by 2.5% non-fat milk in 10 mM tris-buffered saline containing 0.1% Tween-20. After blocking, the membrane was incubated with 11A1 antibody (1 μg/mL) [7] overnight at 4 °C, followed by the incubation with the secondary antibody for 1 h at room temperature. Spots were visualized with an enhanced chemiluminescence detection system using image reader (RAS4000, Fuji-film, Tokyo, Japan).

2.5. Thioflavin T (Th-T) assay

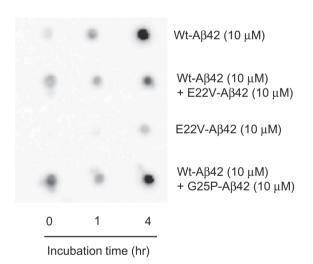
Aggregation of A β 42 was evaluated by Th-T assay according to the previously reported protocol [10] with slight modifications. Each A β derivative was dissolved in 0.02% NH₄OH at 200 μ M. The peptide solution (20 μ M) diluted with 50 mM PBS was incubated at 37 °C for 0–8 h. Two microliters of each A β solution was added to 198 μ L of 5 mM Th-T in 50 mM Gly-NaOH, pH 8.5. Fluorescence intensity was measured at 420 nm-excitation and 485 nm-emission with spectroscopic microplate reader (FLEX STATION II, Molecular Devices, CA, US).

2.6. Statistics

The statistical significance of differences was analyzed by one-way analysis of variance and post hoc multiple comparisons using Tukey's test. Statistical significance was defined as P < 0.05. All data were expressed as the mean \pm SEM.


3. Results

3.1. Effects of G25P-A β 42 and E22V-A β 42 on A β 42-induced neurotoxicity


Proline is known as an inducer of turn structure, while it hardly exists in β -sheet. On the other hand, valine is used as a turn breaker [15]. We investigated the effect of G25P-A β 42, a mutant that induces a "non-toxic" turn at positions 25–26, on the Wt-A β 42-induced toxicity by MTT assay using rat primary neuronal cultures. Wt-A β 42 decreased the cell viability almost to 60% at the concentration of 10 μ M for 2 days, whereas G25P-A β 42 (10 μ M) significantly rescued Wt-A β 42-induced neurotoxicity (up to approximately 80%) (Fig. 1). E22 V-A β 42, a mutant that disfavors a "toxic" turn at positions 22–23, also prevented Wt-A β 42-induced neurotoxicity, and the viability was slightly higher than that of G25P-A β 42. Indeed, G25P-A β 42 and E22V-A β 42 showed no neurotoxicity (Fig. 1). Similarly, the neurotoxicity induced by Wt-A β 42 (1 μ M for 4 days) was decreased by the addition of G25P-A β 42 (1 μ M) or E22V-A β 42 (1 μ M) (data not shown).

3.2. Effects of G25P-A β 42 and E22V-A β 42 on the formation of toxic conformer of A β 42

We previously showed that the toxic conformer of A β 42 could readily form oligomers [6], and that the increase of the toxic conformer preceded neurotoxicity in primary neurons [14]. To examine the effect of G25P-A β 42 and E22V-A β 42 on the formation of 11A1-reactive A β 42 aggregates, we performed dot blot using 11A1 antibody for shorter incubation time (4 h) than the incubation time (48 h) in MTT test. In the Wt-A β 42 solution, the

Fig. 1. Effects of G25P-Aβ42 and E22V-Aβ42 on Aβ42-induced neurotoxicity by MTT assay. Rat primary neurons were exposed to Wt-Aβ42 (10 μ M) for 2 days in the presence or absence of G25P-Aβ42 (10 μ M) or E22V-Aβ42 (10 μ M) at 37 °C. Veh, vehicle. ***P < 0.001 vs. vehicle, ***P < 0.001.

Fig. 2. Effects of G25P-A β 42 and E22V-A β 42 on the formation of toxic conformer of A β 42 by dot blot. Dot blots were performed using 11A1 after incubation for 0–4 h in the Wt-A β 42 solution (10 μ M) in the presence or absence of G25P-A β 42 (10 μ M) or E22V-A β 42 (10 μ M) at 37 °C.

immunoreactivity of 11A1 increased in a time-dependent manner, and these results are in good agreement with the previous ones [14]. In a similar ratio (1:1) to the toxicity test, when Wt-Aβ42 (10 μ M) was co-incubated with G25P-Aβ42 or E22V-Aβ42 (10 μ M), E22V-Aβ42 suppressed the levels of the toxic conformer of Wt-Aβ42 (Fig. 2). We confirmed that E22V-Aβ42 showed almost no signals. G25P-Aβ42 also showed suppressive effect against the formation of the toxic conformer. However, the suppressive effect of G25P-Aβ42 was not so potent as that of E22V-Aβ42, but G25P-Aβ42 did not exacerbate the formation of toxic conformer of Wt-Aβ42 (Fig. 2). Given the recent structural studies that Aβ oligomers contained parallel β -sheet [16], these results imply that

the non-toxic conformer might suppress the levels of toxic conformer by direct interaction with the toxic conformer of Aβ42.

3.3. Effects of G25P-A β 42 and E22V-A β 42 on the aggregation of A β 42

Next, we carried out Th-T tests to evaluate the effect of G25P-AB42 and E22V-AB42 on the aggregation of Wt-AB42. In a similar ratio (1:1) to the toxicity test, G25P-Aβ42 (10 μM) or E22V-Aβ42 (10 µM) completely suppressed the increase in Th-T fluorescence of Wt-Aβ42 (10 μM), respectively (Fig. 3A and C). On the other hand, Wt-Aβ42 (20 μM) showed the strong fluorescence, whereas G25P-Aβ42 (Fig. 3A) and E22V-Aβ42 (Fig. 3B) did not. Interestingly, in another ratio (1:3) of non-toxic Aβ42 (5 μM) to Wt-Aβ42 (15 μM), E22V-A β 42 inhibited the aggregation of Wt-A β 42 more strongly than G25P-Aβ42 (Fig. 3B and D). Neither G25P-Aβ42 (5 μ M) nor E22V-A β 42 (5 μ M) aggregated (Fig. 3B and D). The larger suppressive effect of E22V-Aβ42 on the aggregation than G25P-Aβ42 is consistent with that on the levels of toxic conformer (Fig. 2). These indicate that the E22V-AB42 containing a turnbreakable sequence might inhibit the process of transformation into β-sheet of Aβ42 required for its aggregation.

3.4. Effects of anti-A β 42 antibodies on A β 42-induced neurotoxicity

Neutralization using A β antibody is also one of the approaches to remove the toxic conformer of A β 42 for AD therapeutics. We carried out the neutralization in the MTT test using conformer-specific 11A1 together with sequence-specific antibodies, 6E10 (A β 1–17) and 4G8 (A β 17–24), as a controls. We treated cells exposed to Wt-A β 42 (1 μ M) with 0.1 mg/mL (=ca. 0.67 μ M) antibodies for 4 days because the toxicity of Wt-A β 42 (1 μ M) after a 2-day incubation was not evident (data not shown). The co-treatment of 11A1 significantly rescued the cell viability, whereas cotreatment with 6E10, 4G8, or IgG did not (Fig. 4A). In the case of E22P-A β 42, a more potent mutant of A β 42 [11] the similar results were obtained (Fig. 4B). We confirmed that these antibodies alone were not neurotoxic (Fig. 4C).

Kayed et al. [17] reported that only the conformation-specific antibody (A11) inhibited the A β 42-induced toxicity, but not 6E10, like our experiment (Fig. 4). It is not surprising when it is considered that the epitope sequence of 6E10 could not be involved in the neurotoxicity of A β 42. On the other hand, the other anti-A β 42 antibody 4G8 showed also no suppressive effect against A β 42-induced neurotoxicity in this study. Taking it into account that 4G8 is not reactive to the toxic conformer [14], 4G8 failed to remove the toxic conformer and showed no neuroprotection.

4. Discussion

Collectively, we demonstrated the significant suppression of A β 42-induced neurotoxicity and aggregation by non-toxic A β 42 mutants (G25P-A β 42 and E22V-A β 42) that disfavor "toxic" turn at positions 22–23, and that these suppression could be triggered by decreasing the formation of toxic conformer (Figs. 1–3). Antitoxic A β 42 antibody (11A1), but not 6E10 and 4G8, significantly neutralized the neurotoxicity of A β 42 (Fig. 4). Thesefindings suggest that the non-toxic A β 42 suppress β -sheet formation for aggregation and inhibit the toxic conformer formation of A β 42, leading to neurotoxicity. Because both the formation of β -sheet and the toxic conformer are associated with A β oligomerization, these A β 42 mutants might be a novel drug candidate for the battle with AD.

Given the previous study of systematic replacement with proline that A β 42 aggregates contain intermolecular β -sheet at positions 15–21 and 24–32 [11], G25P-A β 42 and E22V-A β 42 may

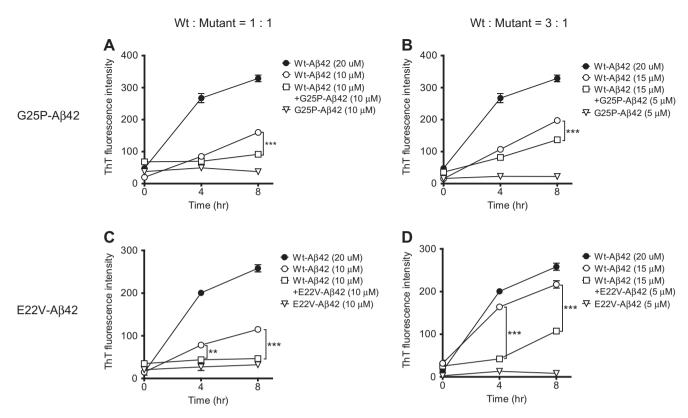
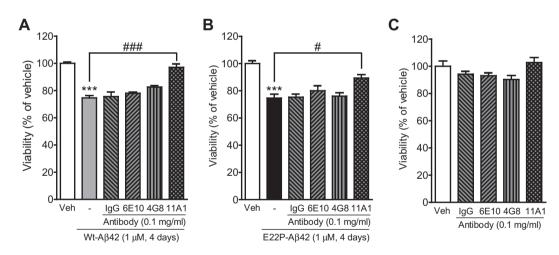



Fig. 3. Effects of G25P-A β 42 and E22V-A β 42 on the aggregation of A β 42 by Th-T test. Wt-A β 42 in the presence or absence of (A, B) G25P-A β 42 and (C and D) E22V-A β 42 at the indicated concentrations was assessed using ThT tests at 37 °C. **P < 0.001.

Fig. 4. Effects of anti-Aβ42 antibodies on Aβ42-induced neurotoxicity by MTT assay. Rat primary neurons were exposed to (A) Wt-Aβ42 (1 μ M) or (B) E22P-Aβ42 (1 μ M) for 4 days in the presence or absence of anti-Aβ antibodies (0.1 mg/mL = ca. 0.67 μ M). (C) Neuronal cells were treated with antibodies alone. 11A1, anti-toxic turn of Aβ42 at positions 22–23; 4G8, anti-Aβ17–24; 6E10, anti-Aβ1–17; IgG, immunoglobulin G. Veh, vehicle. ***P < 0.001 vs. vehicle, **P < 0.05, *##P < 0.001.

intercalate the toxic conformer through parallel β -sheet with high affinity. Recent reports show the propagation of amyloidogenic proteins such as α -synuclein [18] and prion [19] as well as A β [20]. These proteins can aggregate to form seed in a rate-limiting step as a template, followed by the swift elongation into oligomers or fibrils. In our recent research, E22P-A β 42 showed rapid formation of trimer [6], which could be the seed of the A β aggregation. This evidence suggests that the toxic conformer works as a template leading to the conformational change of the non-toxic conformer into the toxic conformer followed by propagation. This concept is supported by the result that Wt-A β 42 exhibited the

time-dependent formation of the toxic conformer [14]. Notably, 11A1 antibody protected against the toxicity of A β 42 (1 μ M) even at low concentration (0.1 mg/mL approximately equivalent to 0.67 μ M) (Fig. 4). Considering that 11A1 is strongly reactive to the trimer of E22P-A β 42 [7], the potent neuroprotective effect of 11A1 could be derived from the removal of the seed of the toxic conformer and the prevention of the oligomer formation. G25P-A β 42 and E22V-A β 42 may inhibit propagation process of the toxic conformer mediated by high affinity to β -sheet, suppressing the formation of the toxic oligomers and β -sheet. The non-toxic A β 42 might have a physiological role for suppression of the propagation

of the toxic conformer and the up-regulation of the non-toxic conformer might lead to the onset of AD.

Acknowledgment

This study was supported in part by Grants-in-Aid for Scientific Research (A) (Grant No. 21248015 to K. I.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

We thank Dr. Noriaki Kinoshita (Immuno-Biological Laboratories Co., Ltd.) for providing the 11A1 antibody.

Reference

- D.J. Selkoe, The cell biology of β-amyloid precursor protein and presentlin in Alzheimer's disease, Trends Cell Biol. 8 (1998) 447–453.
- [2] T. Iwatsubo, D.M. Mann, A. Odaka, N. Suzuki, Y. Ihara, Amyloid β protein (A β) deposition: a β 42(43) precedes A β 40 in Down syndrome, Ann. Neurol. 37 (1995) 294–299.
- [3] C. Haass, D.J. Selkoe, Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide, Nat. Rev. Mol. Cell Biol. 8 (2007) 101– 112.
- [4] M.P. Lambert, A.K. Barlow, B.A. Chromy, C. Edwards, R. Freed, M. Liosatos, T.E. Morgan, I. Rozovsky, B. Trommer, K.L. Viola, P. Wals, C. Zhang, C.E. Finch, G.A. Krafft, W.L. Klein, Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins, Proc. Natl. Acad. Sci. USA 95 (1998) 6448-6453.
- [5] D.M. Walsh, I. Klyubin, J.V. Fadeeva, W.K. Cullen, R. Anwyl, M.S. Wolfe, M.J. Rowan, D.J. Selkoe, Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo, Nature 416 (2002) 535– 539.
- [6] Y. Masuda, S. Uemura, R. Ohashi, A. Nakanishi, K. Takegoshi, T. Shimizu, T. Shirasawa, K. Irie, Identification of physiological and toxic conformations in Aβ42 aggregates, Chembiochem 10 (2009) 287–295.
- [7] K. Murakami, Y. Horikoshi-Sakuraba, N. Murata, Y. Noda, Y. Masuda, N. Kinoshita, H. Hatsuta, S. Murayama, T. Shirasawa, T. Shimizu, K. Irie, Monoclonal antibody against the turn of the 42-residue amyloid β-protein at positions 22 and 23, ACS Chem. Neurosci. 1 (2010) 747–756.
- [8] N. Soejima, Y. Ohyagi, N. Nakamura, E. Himeno, K.M. Iinuma, N. Sakae, R. Yamasaki, T. Tabira, K. Murakami, K. Irie, N. Kinoshita, F.M. LaFerla, Y. Kiyohara, T. Iwaki, J. Kira, Intracellular accumulation of toxic turn amyloid-β is associated with endoplasmic reticulum stress in Alzheimer's disease, Curr. Alzheimer Res. 10 (2013) 11–20.

- [9] T. Kondo, M. Asai, K. Tsukita, Y. Kutoku, Y. Ohsawa, Y. Sunada, K. Imamura, N. Egawa, N. Yahata, K. Okita, K. Takahashi, I. Asaka, T. Aoi, A. Watanabe, K. Watanabe, C. Kadoya, R. Nakano, D. Watanabe, K. Maruyama, O. Hori, S. Hibino, T. Choshi, T. Nakahata, H. Hioki, T. Kaneko, M. Naitoh, K. Yoshikawa, S. Yamawaki, S. Suzuki, R. Hata, S. Ueno, T. Seki, K. Kobayashi, T. Toda, K. Murakami, K. Irie, W.L. Klein, H. Mori, T. Asada, R. Takahashi, N. Iwata, S. Yamanaka, H. Inoue, Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness, Cell Stem Cell 12 (2013) 487–496.
- [10] K. Murakami, K. Irie, A. Morimoto, H. Ohigashi, M. Shindo, M. Nagao, T. Shimizu, T. Shirasawa, Neurotoxicity and physicochemical properties of A β mutant peptides from cerebral amyloid angiopathy Implication for the pathogenesis of cerebral amyloid angiopathy and Alzheimer's disease, J. Biol. Chem. 278 (2003) 46179–46187.
- [11] A. Morimoto, K. Irie, K. Murakami, Y. Masuda, H. Ohigashi, M. Nagao, H. Fukuda, T. Shimizu, T. Shirasawa, Analysis of the secondary structure of β -amyloid (A β 42) fibrils by systematic proline replacement, J. Biol. Chem. 279 (2004) 52781–52788.
- [12] T. Kume, H. Kouchiyama, S. Kaneko, T. Maeda, A. Akaike, S. Shimohama, T. Kihara, J. Kimura, K. Wada, S. Koizumi, BDNF prevents NO mediated glutamate cytotoxicity in cultured cortical neurons, Brain Res. 756 (1997) 200–204.
- [13] T. Kume, H. Nishikawa, H. Tomioka, H. Katsuki, A. Akaike, S. Kaneko, T. Maeda, T. Kihara, S. Shimohama, P75-mediated neuroprotection by NGF against glutamate cytotoxicity in cortical cultures, Brain Res. 852 (2000) 279-289.
- [14] N. Izuo, T. Kume, M. Sato, K. Murakami, K. Irie, Y. Izumi, A. Akaike, Toxicity in rat primary neurons through the cellular oxidative stress induced by the turn formation at positions 22 and 23 of Aβ42, ACS Chem. Neurosci. 3 (2012) 674– 681.
- [15] P.Y. Chou, G.D. Fasman, β-turns in proteins, J. Mol. Biol. 115 (1977) 135– 175.
- [16] S. Chimon, M.A. Shaibat, C.R. Jones, D.C. Calero, B. Aizezi, Y. Ishii, Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid, Nat. Struct. Mol. Biol. 14 (2007) 1157–1164.
- [17] R. Kayed, E. Head, J.L. Thompson, T.M. McIntire, S.C. Milton, C.W. Cotman, C.G. Glabe, Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science 300 (2003) 486–489.
- [18] M. Yonetani, T. Nonaka, M. Masuda, Y. Inukai, T. Oikawa, S. Hisanaga, M. Hasegawa, Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant, J. Biol. Chem. 284 (2009) 7940–7950.
- [19] S.B. Prusiner, Prions, Proc. Natl. Acad. Sci. USA 95 (1998) 13363-13383.
- [20] M.D. Kane, W.J. Lipinski, M.J. Callahan, F. Bian, R.A. Durham, R.D. Schwarz, A.E. Roher, L.C. Walker, Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice, J. Neurosci. 20 (2000) 3606–3611.